Properties of blade-like field emitters

Ultramicroscopy. 2022 Mar:233:113462. doi: 10.1016/j.ultramic.2021.113462. Epub 2022 Jan 1.

Abstract

Blade-Like Field Emitters (BFE), as defined here, are emitters expanded in one direction, forming a sharp emitting edge instead of a sharp tip. These structures have four main advantages compared to their needle counterparts, i.e., they are mechanically firmer, are better electrical and thermal conductors, and provide a larger emission area. We focus on the optimization of the last of these. We evaluate the emission properties of three types of BFEs, which we short-named hSoC-blade, HCP-blade and Elli-blade. Each is built from the expansion of a hemisphere-on-a-cone (hSoC), hemisphere-on-a-cylindrical-post (HCP) and an ellipsoidal (Elli) emitter, respectively. The characteristics of the field enhancement factor, the local electrostatic field distribution on each blades' edges and their notional area (An) of emission as a function of the expansion length are described. Finally, we point out how to improve the edge of the HCP-blade to obtain the optimal profile, which yield the largest An.

Keywords: Blade-type field emitter; Electrostatic simulation; Emission area; Field emission; Field enhancement factor.