Optimization of dual energy computed tomography post-processing to reduce lower limb artifacts in gout

Quant Imaging Med Surg. 2022 Jan;12(1):539-549. doi: 10.21037/qims-21-321.

Abstract

Background: In gout, several types of dual-energy computed tomography (DECT) artifacts have been described (nail bed, skin, beam hardening, submillimeter and vascular artifacts), which can lead to overdiagnosis. The objective of this study was to determine the optimal DECT settings for post processing in order to reduce the frequency of some common artifacts in patients with suspected gout.

Methods: Seventy-seven patients hospitalized for suspected gout (feet/ankles and/or knees) who received a DECT imaging were included (final diagnosis of 43 gout and 34 other rheumatic disorders). Different post-processing settings were evaluated using Syngovia software: nine settings (R1 to R9) were evaluated with a combination of different ratio (1.28, 1.36 and 1.55) and attenuation coefficient (120, 150, 170 HU).

Results: Among the nine settings tested, the R2 setting (170 HU, ratio =1.28) significantly reduced the presence of knee and foot/ankle artifacts compared to the standard R1 setting (85% and 94% decrease in beam hardening and clumpy artifacts in the ankle and foot, respectively (P<0.001); a decrease of 71%, 60% and 88% respectively of meniscal beam hardening, beam hardening and submillimeter artifacts in the knee (P<0.001). Compared to standard settings, the use of R2 settings decreased sensitivity [0.79 (95% CI: 0.65, 0.88) versus 0.90 (95% CI: 0.78, 0.96)] and increased specificity [0.86 (95% CI: 0.71, 0.93) versus 0.63 (95% CI: 0.47, 0.77)] (P<0.001). Settings using an attenuation coefficient to 120 HU and/or a ratio to 1.55 were all associated with a significant increasing of artifacts, especially clumpy and beam hardening artifacts.

Conclusions: Applying a ratio of 1.28 and a minimum attenuation of 170 HU in DECT post-processing eliminates the majority of artifacts located in the lower limbs, particularly clumpy artifacts and beam hardening.

Keywords: Gout; artifacts; dual energy computed tomography; post-processing.