Altered IGF-I activity and accelerated bone elongation in growth plates precede excess weight gain in a mouse model of juvenile obesity

J Appl Physiol (1985). 2022 Feb 1;132(2):511-526. doi: 10.1152/japplphysiol.00431.2021. Epub 2022 Jan 6.

Abstract

Nearly one-third of children in the United States are overweight or obese by their preteens. Tall stature and accelerated bone elongation are characteristic features of childhood obesity, which cooccur with conditions such as limb bowing, slipped epiphyses, and fractures. Children with obesity paradoxically have normal circulating IGF-I, the major growth-stimulating hormone. Here, we describe and validate a mouse model of excess dietary fat to examine mechanisms of growth acceleration in obesity. We used in vivo multiphoton imaging and immunostaining to test the hypothesis that high-fat diet increases IGF-I activity and alters growth plate structure before the onset of obesity. We tracked bone and body growth in male and female C57BL/6 mice (n = 114) on high-fat (60% kcal fat) or control (10% kcal fat) diets from weaning (3 wk) to skeletal maturity (12 wk). Tibial and tail elongation rates increased after brief (1-2 wk) high-fat diet exposure without altering serum IGF-I. Femoral bone density and growth plate size were increased, but growth plates were disorganized in not-yet-obese high-fat diet mice. Multiphoton imaging revealed more IGF-I in the vasculature surrounding growth plates of high-fat diet mice and increased uptake when vascular levels peaked. High-fat diet growth plates had more activated IGF-I receptors and fewer inhibitory binding proteins, suggesting increased IGF-I bioavailability in growth plates. These results, which parallel pediatric growth patterns, highlight the fundamental role of diet in the earliest stages of developing obesity-related skeletal complications and validate the utility of the model for future studies aimed at determining mechanisms of diet-enhanced bone lengthening.NEW & NOTEWORTHY This paper validates a mouse model of linear growth acceleration in juvenile obesity. We demonstrate that high-fat diet induces rapid increases in bone elongation rate that precede excess weight gain and parallel pediatric growth. By imaging IGF-I delivery to growth plates in vivo, we reveal novel diet-induced changes in IGF-I uptake and activity. These results are important for understanding the sequelae of musculoskeletal complications that accompany advanced bone age and obesity in children.

Keywords: IGF binding protein; endochondral ossification; growth plate; high-fat diet; multiphoton microscopy.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Child
  • Diet, High-Fat / adverse effects
  • Female
  • Growth Plate* / metabolism
  • Humans
  • Insulin-Like Growth Factor I / metabolism
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Pediatric Obesity*
  • Weight Gain

Substances

  • Insulin-Like Growth Factor I

Associated data

  • figshare/10.6084/m9.figshare.16850215