[Geochemical Characteristics and Driving Factors of High-Iodine Groundwater in Rapidly Urbanized Delta Areas: A Case Study of the Pearl River Delta]

Huan Jing Ke Xue. 2022 Jan 8;43(1):339-348. doi: 10.13227/j.hjkx.202105247.
[Article in Chinese]

Abstract

The source of iodine in the groundwater of coastal urbanization areas is complex, and high-iodine groundwater is a potential threat to the safety of drinking water. Based on this, this study took the Pearl River Delta, which is developing rapidly in urbanization, as the research area. Additionally, the occurrence characteristics and driving factors of iodide in shallow groundwater of different aquifers and different urbanization levels in the Pearl River Delta were studied using mathematical statistics, principal component analysis, and other methods. The results showed that the concentration of iodide in the shallow groundwater was 2.34 mg·L-1 and undetected in the form of I-. Among 1567 groundwater samples in the study area, there were 120 groups of groundwater with high iodine content greater than 0.1 mg·L-1, accounting for 7.7%. Among them, 84 and 36 groups were detected in shallow porous and shallow fissure high-iodine groundwater, respectively, whereas no high-iodine groundwater was detected in the karst aquifer. The proportion of high-iodine groundwater was 8.0% in the shallow porous aquifer and 7.5% in the shallow fissure aquifer. Both the porous aquifer and the fissured aquifer with high iodine content were mainly distributed in the urbanized areas, the proportion of which was more than three times that of the non-urbanized areas. The chemical types of the high-iodine groundwater were mainly HCO3·Cl-Ca·Na and Cl-Na type water, which have the characteristics of high pH and low redox potential. The reduction and dissolution of iodine-containing Fe/Mn (oxygen) hydroxides and the decomposition of iodine-rich organics in sediments may be the main sources of high-iodine groundwater in the shallow porous aquifers of the Pearl River Delta Plain. The degradation and urbanization of organic matter in carbonate-rich rocks is accompanied by the leakage of reducing sewage, which may be the main source of high-iodine groundwater in shallow fissured aquifers. The neutral to weakly alkaline reduction environment with rich organic matter was the main cause of high-iodine groundwater in the Delta Plain area. Weathering, leaching, cation exchange, and sea-land interactions are the main hydrogeochemical processes in the evolution of high-iodine groundwater in the Pearl River Delta.

Keywords: Pearl River Delta; driving factors; geochemical characteristics; high-iodine groundwater; urbanization.

MeSH terms

  • Environmental Monitoring
  • Groundwater*
  • Iodides
  • Iodine*
  • Rivers
  • Water Pollutants, Chemical* / analysis

Substances

  • Iodides
  • Water Pollutants, Chemical
  • Iodine