Promotion of the Co3O4/TiO2 Interface on Catalytic Decomposition of Ammonium Perchlorate

ACS Appl Mater Interfaces. 2022 Jan 19;14(2):3476-3484. doi: 10.1021/acsami.1c20510. Epub 2022 Jan 5.

Abstract

Supports can widely affect or even dominate the catalytic activity and selectivity of nanoparticles because atomic geometry and electronic structures of active sites can be regulated, especially at the interface of nanoparticles and supports. However, the underlying mechanisms of most systems are still not fully understood yet. Herein, we construct the interface of Co3O4/TiO2 to boost ammonium perchlorate (AP) catalytic decomposition. This catalyst shows enhanced catalytic performance. With the addition of 2 wt % Co3O4/TiO2 catalysts, AP decomposition peak temperature decreases from 435.7 to 295.0 °C and activation energy decreases from 211.5 to 137.7 kJ mol-1. By combining experimental and theoretical studies, we find that Co3O4 nanoparticles can be strongly anchored onto TiO2 supports accompanied by charge transfer. Moreover, at the interfaces in the Co3O4/TiO2 nanostructure, NH3 adsorption can be enhanced through hydrogen bonds. Our research studies provide new insights into the promotion effects of the nanoparticle/support system on the AP decomposition process and inspire the design of efficient catalysts.

Keywords: Co3O4/TiO2; DFT; ammonium perchlorate; electronic structures; interface.