Nucleation Engineering in Sprayed MA3Bi2I9 Films for Direct-Conversion X-ray Detectors

J Phys Chem Lett. 2022 Jan 13;13(1):371-377. doi: 10.1021/acs.jpclett.1c03922. Epub 2022 Jan 5.

Abstract

Metal halide perovskite and its derivatives show great promise in X-ray detection. However, large-scale fabrication of high-quality thick perovskite films is still full of challenges due to the complicated crystal nucleation process that always introduces lots of cracks or pinholes in the final perovskite film. Here, a MA3Bi2I9 film was fabricated by the cost-effective, scalable spraying process, and MACl was used as an additive to effectively tune the crystallization process. As a result, a dense MA3Bi2I9 film constituted by large grains was obtained, which has a high carrier mobility of ∼1 cm2 V-1 s-1 and a large activation energy (Ea) for ion migration of 0.91 eV. Thanks to the outstanding optoelectronic characteristics, X-ray detectors with a configuration of ITO/MA3Bi2I9/Au show a sensitivity of 35 μC Gyair-1 cm-2 and a limit of detection (LoD) of 0.14 μGyairs-1, which is outstanding compared with commercial α-Se detectors.