Dangling Carboxylic Group That Participates in O-O Bond Formation Reaction to Promote Water Oxidation Catalyzed by a Ruthenium Complex: Experimental Evidence of an Oxide Relay Pathway

Inorg Chem. 2022 Jan 24;61(3):1426-1437. doi: 10.1021/acs.inorgchem.1c03105. Epub 2022 Jan 4.

Abstract

Two mononuclear ruthenium(II) complexes of the types [Ru(trpy)(HL1)(OH2)]2+ (1Aq) and [Ru(trpy)(L2-κ-N2O)] (2) [where trpy = 2,2':6',2″-terpyridine, HL1 = 2-(2-pyridyl)benzimidazole, H2L2 = 2-(pyridin-2-yl)-1H-benzo[d]imidazole-4-carboxylic acid] have been synthesized and thoroughly characterized by analytical and spectroscopic [UV-vis, NMR, high-resolution mass spectrometry, and IR] techniques. Complex 1Aq has been further characterized by X-ray crystallography. In an acidic aqueous medium (pH 1), complex 2 undergoes carboxylate/water exchange readily to form an aqua-ligated complex, [Ru(trpy)(H2L2-κ-N2)(OH2)]2+ (2Aq), having a dangling carboxylic group. This exchange phenomenon has been followed by IR, 1H NMR, and UV-vis spectroscopic techniques. Electrochemical analyses of 1Aq and 2Aq (Pourbaix diagram) suggest the generation of a formal RuV═O species that can potentially promote the oxidation of water. A comparative study of the water oxidation activity catalyzed by 1Aq and 2Aq is reported here to see the effect of a dangling carboxylic group in the catalytic performance. Complex 2Aq shows an enormously higher rate of reaction than 1Aq. The pendant carboxylic group in 2Aq participates in an intramolecular O-O bond formation reaction with the reactive formal RuV═O unit to form a percarboxylate intermediate and provides an electron-deficient carbon center where water nucleophilic attack takes place. The isotope labeling experiment using 18O-labeled water verifies the attack of water at the carbon center of the carboxylic group rather than a direct attack at the oxo of the formal RuV═O unit. The present work provides experimental evidence of the uncommon functionality of the carboxylic group, the oxide relay, in molecular water oxidation chemistry.