Using Machine Learning to Identify Intravenous Contrast Phases on Computed Tomography

Comput Methods Programs Biomed. 2022 Mar:215:106603. doi: 10.1016/j.cmpb.2021.106603. Epub 2021 Dec 25.

Abstract

Purpose: The purpose of the present work is to demonstrate the application of machine learning (ML) techniques to automatically identify the presence and physiologic phase of intravenous (IV) contrast in Computed Tomography (CT) scans of the Chest, Abdomen and Pelvis.

Materials and methods: Training, testing and validation data were acquired from a dataset of 82,690 chest and abdomen CT examinations performed at 17 different institutions. Free text in DICOM metadata was utilized as weak labels for semi-supervised classification training. Contrast phase identification was approached as a classification task, using a 12-layer CNN and ResNet18 with four contrast-phase output. The model was reformulated to fit a regression task aimed to predict actual seconds from time of IV contrast administration to series image acquisition. Finally, transfer learning was used to optimize the model to predict contrast presence on CT Chest.

Results: By training based on labels inferred from noisy, free text DICOM information, contrast phase was predicted with 93.3% test accuracy (95% CI: 89.3%, 96.6%) . Regression analysis resulted in delineation of early vs late arterial phases and a nephrogenic phase in between the portal venous and delayed excretory phase. Transfer learning applied to Chest CT achieved an AUROC of 0.776 (95% CI: 0.721, 0.832) directly using the model trained for abdomen CT and 0.999 (95% CI: 0.998, 1.000) by fine-tuning.

Conclusions: The presence and phase of contrast on CT examinations of the Abdomen-pelvis accurately and automatically be ascertained by a machine learning algorithm. Transfer learning applied to CT Chest achieves high precision with as little as 100 labeled samples.

MeSH terms

  • Abdomen / diagnostic imaging
  • Algorithms
  • Machine Learning*
  • Pelvis
  • Tomography, X-Ray Computed*