Thiocyanate-Passivated Diaminonaphthalene-Incorporated Dion-Jacobson Perovskite for Highly Efficient and Stable Solar Cells

ACS Appl Mater Interfaces. 2022 Jan 12;14(1):850-860. doi: 10.1021/acsami.1c19546. Epub 2022 Jan 3.

Abstract

Two-dimensional (2D) metal halide perovskites have recently emerged as promising photovoltaic materials due to their superior ambient stability and rich structural diversity. However, power conversion efficiencies (PCEs) of the 2D perovskites solar cells (PSCs) still lag behind their three-dimensional (3D) counterpart, particularly due to the anisotropy in the charge carrier mobility and inhomogeneous energy landscape. A promising alternative is Dion-Jacobson (D-J) phase quasi-2D perovskite, where the bulky organic diammonium cations are introduced into inorganic frameworks to remove the weak van der Waals interactions between interlayers and to improve the open-circuit voltage (Voc). Although the D-J phase 2D perovskite shows a homogeneous energy landscape and better charge transport, their poor crystallinity and existence of higher trap states remain a major challenge for the development of high-efficiency solar cells device. To address this issue, here, we report the eclipsed D-J phase 2D perovskite using 1,5-diaminonaphthalene cation and subsequently treated the film with ammonium thiocyanate (NH4SCN) additive to further improve the film crystallinity, out-of-plane orientation, and carrier mobility. We observe that 2 mol NH4SCN surface treatment in NDA-based D-J phase perovskite leads to better film morphology and improved crystallinity, as confirmed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Time-resolved photoluminescence (TRPL) spectroscopy and steady-state space charge limited current (SCLC) mobility measurement reveal a significant reduction of trap-assisted nonradiative recombination and improvement of carrier mobility in the thiocyanate-passivated perovskite. Consequently, the PCE of the NH4SCN-treated (NDA)(MA)3(Pb)4(I)13 perovskite device enhanced nearly 46% from 10.3 to 15.08%. We have further studied intensity-dependent J-V characteristics, which demonstrate the reduction of ideality factor, confirming the effective suppression of trap-assisted nonradiative recombination, consistent with the transient PL results. Electrochemical impedance spectroscopy (EIS) confirms the improved charge carrier transport in NH4SCN additive-treated devices. Interestingly, our additive-engineered unsealed perovskite devices retained 75% of their initial efficiency after 1000 h of continuous storage under 60% relative humidity. This study opens up the strategy for developing high-efficiency and stable 2D perovskite solar cells.

Keywords: 2D perovskite solar cells; D−J phase quasi 2D perovskite; additive engineering; diammonium spacer; efficiency; stability.