Very Low Frequency Radial Modulation for Deep Penetration Contrast-Enhanced Ultrasound Imaging

Ultrasound Med Biol. 2022 Mar;48(3):530-545. doi: 10.1016/j.ultrasmedbio.2021.11.010. Epub 2021 Dec 28.

Abstract

Contrast-enhanced ultrasound imaging allows vascular imaging in a variety of diseases. Radial modulation imaging is a contrast agent-specific imaging approach for improving microbubble detection at high imaging frequencies (≥7.5 MHz), with imaging depth limited to a few centimeters. To provide high-sensitivity contrast-enhanced ultrasound imaging at high penetration depths, a new radial modulation imaging strategy using a very low frequency (100 kHz) ultrasound modulation wave in combination with imaging pulses ≤5 MHz is proposed. Microbubbles driven at 100 kHz were imaged in 10 successive oscillation states by manipulating the pulse repetition frequency to unlock the frame rate from the number of oscillation states. Tissue background was suppressed using frequency domain radial modulation imaging (F-RMI) and singular value decomposition-based radial modulation imaging (S-RMI). One hundred-kilohertz modulation resulted in significantly higher microbubble signal magnitude (63-88 dB) at the modulation frequency relative to that without 100-kHz modulation (51-59 dB). F-RMI produced images with high contrast-to-tissue ratios (CTRs) of 15 to 22 dB in a stationary tissue phantom, while S-RMI further improved the CTR (19-26 dB). These CTR values were significantly higher than that of amplitude modulation pulse inversion images (11.9 dB). In the presence of tissue motion (1 and 10 mm/s), S-RMI produced high-contrast images with CTR up to 18 dB; however, F-RMI resulted in minimal contrast enhancement in the presence of tissue motion. Finally, in transcranial ultrasound imaging studies through a highly attenuating ex vivo cranial bone, CTR values with S-RMI were as high as 23 dB. The proposed technique demonstrates successful modulation of microbubble response at 100 kHz for the first time. The presented S-RMI low-frequency radial modulation imaging strategy represents the first demonstration of real-time (20 frames/s), high-penetration-depth radial modulation imaging for contrast-enhanced ultrasound imaging.

Keywords: Contrast agent; Low-frequency ultrasound; Radial modulation; Transcranial ultrasound.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Contrast Media*
  • Microbubbles*
  • Phantoms, Imaging
  • Ultrasonic Waves
  • Ultrasonography / methods

Substances

  • Contrast Media