Broadband square cloak in elastic wave metamaterial plate with active control

J Acoust Soc Am. 2021 Dec;150(6):4343. doi: 10.1121/10.0008974.

Abstract

Cloaking invisibility is a novel technique that prevents the object from being detected in the background field. The development of new artificial materials and structures promotes the emergence of new achievements in cloaking research. In this work, a broadband square cloaking configuration of elastic wave metamaterial plate is designed and fabricated by the external active control system. The approximate parameters of the flexural wave cloak can be obtained by the coordinate transformation and achieved by alternating layers of the Acrylonitrile Butadiene Styrene (ABS), polydimethylsiloxane (PDMS), and piezoelectric (PZT) patches. With the introduction of active control systems, the square cloak has a wide effective frequency range. The simulation and experimental results show that the square cloak of flexural waves exhibits a good invisible performance in the frequency region of 500-2200 Hz. Compared to the structure without active control systems, the frequency region 2200-2750 Hz is extended for the active cloak. The design and fabrication of the broadband cloak is wished to be helpful during the practical engineering.