How many long branch orders occur in Chelicerata? Opposing effects of Palpigradi and Opilioacariformes on phylogenetic stability

Mol Phylogenet Evol. 2022 Mar:168:107378. doi: 10.1016/j.ympev.2021.107378. Epub 2021 Dec 27.

Abstract

Excepting a handful of nodes, phylogenetic relationships between chelicerate orders remain poorly resolved, due to both the incidence of long branch attraction artifacts and the limited sampling of key lineages. It has recently been shown that increasing representation of basal nodes plays an outsized role in resolving the higher-level placement of long-branch chelicerate orders. Two lineages have been consistently undersampled in chelicerate phylogeny. First, sampling of the miniaturized order Palpigradi has been restricted to a fragmentary transcriptome of a single species. Second, sampling of Opilioacariformes, a rarely encountered and key group of Parasitiformes, has been restricted to a single exemplar. These two lineages exhibit dissimilar properties with respect to branch length; Opilioacariformes shows relatively low evolutionary rate compared to other Parasitiformes, whereas Palpigradi possibly acts as another long-branch order (an effect that may be conflated with the degree of missing data). To assess these properties and their effects on tree stability, we constructed a phylogenomic dataset of Chelicerata wherein both lineages were sampled with three terminals, increasing the representation of these taxa per locus. We examined the effect of subsampling phylogenomic matrices using (1) taxon occupancy, (2) evolutionary rate, and (3) a principal components-based approach. We further explored the impact of taxon deletion experiments that mitigate the effect of long branches. Here, we show that Palpigradi constitutes a fourth long-branch chelicerate order (together with Acariformes, Parasitiformes, and Pseudoscorpiones), which further destabilizes the chelicerate backbone topology. By contrast, the slow-evolving Opilioacariformes were consistently recovered within Parasitiformes, with certain subsampling practices recovering their placement as the sister group to the remaining Parasitiformes. Whereas the inclusion of Opilioacariformes always resulted in the non-monophyly of Acari with support, deletion of Opilioacariformes from datasets consistently incurred the monophyly of Acari except in matrices constructed on the basis of evolutionary rate. Our results strongly suggest that Acari is an artifact of long- branch attraction.

Keywords: Arachnida; Evolutionary rate; Long branch attraction; Phylogenetic usefulness; Phylogenomic subsampling.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Acari*
  • Animals
  • Arachnida*
  • Biological Evolution
  • Phylogeny