Catching hold of COVID-19-related encephalitis by tracking ANGPTL4 signature in blood: An Editorial Highlight for "Endothelial cell biomarkers in critically ill COVID-19-patients with encephalitis": An Editorial Highlight for "Endothelial cell biomarkers in critically ill COVID-19-patients with encephalitis" on page 492

J Neurochem. 2022 Jun;161(6):458-462. doi: 10.1111/jnc.15560. Epub 2021 Dec 29.

Abstract

Infection by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in humans is characterized by a plethora of symptoms varying in intensity, such as non-specific febrile illness, dry cough, dyspnea, hypoxemia to severe lung damage, and even death. In addition to pulmonary complications associated with coronavirus disease-19 (COVID-19), perturbations in the physiology of multiple other organ systems have been reported, resulting in multiorgan failure (MoF) that is frequently observed in severe COVID-19 cases. Central nervous system (CNS) infection by SARS-CoV-2 is characterized by neurological impairments in patients with COVID-19, with the development of encephalopathy at the severe end of the spectrum. While mechanistic investigations of SARS-CoV-2-related encephalitis may reveal promising therapeutic candidates for reducing COVID-19-associated disease morbidity, the discovery of biomarkers capable of diagnosing and predicting prognosis in patients with encephalitis upon SARS-CoV-2 infection will afford significant value for the rapid detection of encephalitis and predicting disease outcomes. This will ultimately enable appropriate modifications of therapeutic regimens aimed at reducing disease morbidity and mortality. In this editorial, we highlight a study by Le Guennec and colleagues, entitled "Endothelial cell biomarkers in critically ill COVID-19-patients with encephalitis", reporting the association of increased serum angiopoietin-like 4 (ANGPTL4) abundance with COVID-19-related encephalitis. The study highlights ANGPTL4 as a potential molecular marker for this disease. These novel findings may catalyze developments in the field of COVID-19-associated encephalitis by facilitating accurate and rapid diagnosis of encephalitis and timely treatment initiation, thus improving patient outcomes by ameliorating disease burden.

Publication types

  • Editorial
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Angiopoietin-Like Protein 4* / blood
  • Biomarkers
  • COVID-19* / complications
  • Critical Illness
  • Encephalitis* / virology
  • Endothelial Cells
  • Humans
  • SARS-CoV-2

Substances

  • ANGPTL4 protein, human
  • Angiopoietin-Like Protein 4
  • Biomarkers