Partiti-like viruses from African armyworm increase larval and pupal mortality of a novel host: the Egyptian cotton leafworm

Pest Manag Sci. 2022 Apr;78(4):1529-1537. doi: 10.1002/ps.6771. Epub 2022 Jan 10.

Abstract

Background: The general principle of using microbes from one species to manage a different pest species has a clear precedent in the large-scale release of mosquitoes carrying a Wolbachia bacterium derived from Drosophila flies. New technologies will facilitate the discovery of microbes that can be used in a similar way. Previously, we found three novel partiti-like viruses in the African armyworm (Spodoptera exempta). To investigate further the utility and consistency of host shift of insect viruses as a potential pest management tool, we tested the interaction between the partiti-like viruses and another novel host, the Egyptian cotton leafworm (Spodoptera littoralis).

Result: We found that all three partiti-like viruses appeared to be harmful to the novel host S. littoralis, by causing increased larval and pupal mortality. No effect was observed on host fecundity, and partiti-like virus infection did not impact host susceptibility when challenged with another pathogen, the baculovirus SpliNPV. Transcriptome analysis of partiti-like virus-infected and noninfected S. littoralis indicated that the viruses could impact host gene-expression profiles of S. littoralis, but they impact different pathways to the two other Spodoptera species through effects on pathways related to immunity (Jak-STAT/Toll and Imd) and reproduction (insulin signaling/insect hormones).

Conclusion: Taken together with the previous findings in the novel host S. frugiperda, these results indicate a parasitic relationship between the partiti-like viruses and novel insect hosts, suggesting a possible use and novel pest management strategy through the artificial host shift of novel viruses. © 2021 Society of Chemical Industry.

Keywords: Spodoptera littoralis; fitness; host shift; partiti-like viruses; transcriptome.

MeSH terms

  • Animals
  • Baculoviridae*
  • Egypt
  • Larva
  • Pupa
  • Spodoptera