Mimicking Native Display of CD0873 on Liposomes Augments Its Potency as an Oral Vaccine against Clostridioides difficile

Vaccines (Basel). 2021 Dec 8;9(12):1453. doi: 10.3390/vaccines9121453.

Abstract

Mucosal vaccination aims to prevent infection mainly by inducing secretory IgA (sIgA) antibody, which neutralises pathogens and enterotoxins by blocking their attachment to epithelial cells. We previously demonstrated that encapsulated protein antigen CD0873 given orally to hamsters induces neutralising antibodies locally as well as systemically, affording partial protection against Clostridioides difficile infection. The aim of this study was to determine whether displaying CD0873 on liposomes, mimicking native presentation, would drive a stronger antibody response. The recombinant form we previously tested resembles the naturally cleaved lipoprotein commencing with a cysteine but lacking lipid modification. A synthetic lipid (DHPPA-Mal) was designed for conjugation of this protein via its N-terminal cysteine to the maleimide headgroup. DHPPA-Mal was first formulated with liposomes to produce MalLipo; then, CD0873 was conjugated to headgroups protruding from the outer envelope to generate CD0873-MalLipo. The immunogenicity of CD0873-MalLipo was compared to CD0873 in hamsters. Intestinal sIgA and CD0873-specific serum IgG were induced in all vaccinated animals; however, neutralising activity was greatest for the CD0873-MalLipo group. Our data hold great promise for development of a novel oral vaccine platform driving intestinal and systemic immune responses.

Keywords: Clostridioides difficile; IgG; lipidation; liposomes; oral vaccine; recombinant protein; sIgA.