Magnetic Resonance Imaging Images under Deep Learning in the Identification of Tuberculosis and Pneumonia

J Healthc Eng. 2021 Dec 15:2021:6772624. doi: 10.1155/2021/6772624. eCollection 2021.

Abstract

This work aimed to explore the application value of deep learning-based magnetic resonance imaging (MRI) images in the identification of tuberculosis and pneumonia, in order to provide a certain reference basis for clinical identification. In this study, 30 pulmonary tuberculosis patients and 27 pneumonia patients who were hospitalized were selected as the research objects, and they were divided into a pulmonary tuberculosis group and a pneumonia group. MRI examination based on noise reduction algorithms was used to observe and compare the signal-to-noise ratio (SNR) and carrier-to-noise ratio (CNR) of the images. In addition, the apparent diffusion coefficient (ADC) value for the diagnosis efficiency of lung parenchymal lesions was analyzed, and the best b value was selected. The results showed that the MRI image after denoising by the deep convolutional neural network (DCNN) algorithm was clearer, the edges of the lung tissue were regular, the inflammation signal was higher, and the SNR and CNR were better than before, which were 119.79 versus 83.43 and 12.59 versus 7.21, respectively. The accuracy of MRI based on a deep learning algorithm in the diagnosis of pulmonary tuberculosis and pneumonia was significantly improved (96.67% vs. 70%, 100% vs. 62.96%) (P < 0.05). With the increase in b value, the CNR and SNR of MRI images all showed a downward trend (P < 0.05). Therefore, it was found that the shadow of tuberculosis lesions under a specific sequence was higher than that of pneumonia in the process of identifying tuberculosis and pneumonia, which reflected the importance of deep learning MRI images in the differential diagnosis of tuberculosis and pneumonia, thereby providing reference basis for clinical follow-up diagnosis and treatment.

Publication types

  • Retracted Publication

MeSH terms

  • Algorithms
  • Deep Learning*
  • Humans
  • Magnetic Resonance Imaging / methods
  • Pneumonia* / diagnostic imaging
  • Signal-To-Noise Ratio
  • Tuberculosis, Pulmonary* / diagnostic imaging