Mechanics of CRISPR-Cas12a and engineered variants on λ-DNA

Nucleic Acids Res. 2022 May 20;50(9):5208-5225. doi: 10.1093/nar/gkab1272.

Abstract

Cas12a is an RNA-guided endonuclease that is emerging as a powerful genome-editing tool. Here, we selected a target site on bacteriophage λ-DNA and used optical tweezers combined with fluorescence to provide mechanistic insight into wild type Cas12a and three engineered variants, where the specific dsDNA and the unspecific ssDNA cleavage are dissociated (M1 and M2) and a third one which nicks the target DNA (M3). At low forces wtCas12a and the variants display two main off-target binding sites, while on stretched dsDNA at higher forces numerous binding events appear driven by the mechanical distortion of the DNA and partial matches to the crRNA. The multiple binding events onto dsDNA at high tension do not lead to cleavage, which is observed on the target site at low forces when the DNA is flexible. In addition, activity assays also show that the preferential off-target sites for this crRNA are not cleaved by wtCas12a, indicating that λ-DNA is only severed at the target site. Our single molecule data indicate that the Cas12a scaffold presents singular mechanical properties, which could be used to generate new endonucleases with biomedical and biotechnological applications.

MeSH terms

  • Bacterial Proteins / chemistry
  • Bacterial Proteins / genetics*
  • Bacterial Proteins / metabolism
  • Bacteriophage lambda / genetics
  • CRISPR-Associated Proteins / chemistry
  • CRISPR-Associated Proteins / genetics*
  • CRISPR-Associated Proteins / metabolism
  • CRISPR-Cas Systems*
  • DNA / chemistry
  • Endodeoxyribonucleases / chemistry
  • Endodeoxyribonucleases / genetics*
  • Endodeoxyribonucleases / metabolism
  • Endonucleases / metabolism
  • Gene Editing / methods*
  • RNA, Guide, CRISPR-Cas Systems / genetics

Substances

  • Bacterial Proteins
  • CRISPR-Associated Proteins
  • RNA, Guide, CRISPR-Cas Systems
  • DNA
  • Cas12a protein
  • Endodeoxyribonucleases
  • Endonucleases