Fast and accurate metagenotyping of the human gut microbiome with GT-Pro

Nat Biotechnol. 2022 Apr;40(4):507-516. doi: 10.1038/s41587-021-01102-3. Epub 2021 Dec 23.

Abstract

Single nucleotide polymorphisms (SNPs) in metagenomics are used to quantify population structure, track strains and identify genetic determinants of microbial phenotypes. However, existing alignment-based approaches for metagenomic SNP detection require high-performance computing and enough read coverage to distinguish SNPs from sequencing errors. To address these issues, we developed the GenoTyper for Prokaryotes (GT-Pro), a suite of methods to catalog SNPs from genomes and use unique k-mers to rapidly genotype these SNPs from metagenomes. Compared to methods that use read alignment, GT-Pro is more accurate and two orders of magnitude faster. Using high-quality genomes, we constructed a catalog of 104 million SNPs in 909 human gut species and used unique k-mers targeting this catalog to characterize the global population structure of gut microbes from 7,459 samples. GT-Pro enables fast and memory-efficient metagenotyping of millions of SNPs on a personal computer.

MeSH terms

  • Gastrointestinal Microbiome* / genetics
  • Genotype
  • Humans
  • Metagenome / genetics
  • Metagenomics / methods
  • Microbiota* / genetics
  • Software