Earliest Experience of a Relatively Rare Sound But Not a Frequent Sound Causes Long-Term Changes in the Adult Auditory Cortex

J Neurosci. 2022 Feb 23;42(8):1454-1476. doi: 10.1523/JNEUROSCI.0431-21.2021. Epub 2021 Dec 23.

Abstract

Sensory experience during a critical period alters sensory cortical responses and organization. We find that the earliest sound-driven activity in the mouse auditory cortex (ACX) starts before ear-canal opening (ECO). The effects of auditory experience before ECO on ACX development are unknown. We find that in mouse ACX subplate neurons (SPNs), crucial in thalamocortical maturation, respond to sounds before ECO showing oddball selectivity. Before ECO, SPNs are more selective to oddball sounds in auditory streams than thalamo-recipient layer 4 (L4) neurons and not after ECO. We hypothesize that SPN's oddball selectivity can direct the development of L4 responses before ECO. Exposing mice, of either sex, before ECO to a rarely occurring tone in a stream of another tone occurring frequently leads to strengthening the adult cortical representation of the rare tone, but not that of the frequent tone. Results of control exposure experiments at multiple developmental windows that also use only a single tone corroborate the observations. We further explain the strengthening of deviant inputs before ECO and not after ECO using a binary network model mimicking the hierarchical structure of subplate and L4 neurons and response properties derived from our data, with synapses following Hebbian spike time-dependent plasticity learning rule. Information-theoretic analysis with sparse coding assumptions also predicts the observations. Thus, relatively salient low probability sounds in the earliest auditory environment cause long-term changes in the ACX.SIGNIFICANCE STATEMENT Early auditory experience can change the organization and responses of the auditory cortex in adulthood. However, little is known about how auditory experience at prenatal ages changes neural circuits and response properties. In mice at equivalent early developmental stages, we find that auditory experience of a particular kind, with a less frequently occurring sound in a stream of another sound, alters adult cortical responsiveness, specifically of the less frequent sound. However, at the previously known critical period of development, the opposite is observed, where the more frequent sound's representation is strengthened in the adult compared with the less frequent sound. We thus show that a specific type of auditory environment can influence adult auditory processing at the earliest ages.

Keywords: SSA; auditory cortex; critical period; oddball; plasticity; subplate.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acoustic Stimulation / methods
  • Animals
  • Auditory Cortex* / physiology
  • Auditory Perception / physiology
  • Mice
  • Neurons / physiology
  • Sound
  • Synapses / physiology