Current Advancements of Plant-Derived Agents for Triple-Negative Breast Cancer Therapy through Deregulating Cancer Cell Functions and Reprogramming Tumor Microenvironment

Int J Mol Sci. 2021 Dec 17;22(24):13571. doi: 10.3390/ijms222413571.

Abstract

Triple-negative breast cancer (TNBC) is defined based on the absence of estrogen, progesterone, and human epidermal growth factor receptor 2 receptors. Currently, chemotherapy is the major therapeutic approach for TNBC patients; however, poor prognosis after a standard chemotherapy regimen is still commonplace due to drug resistance. Abnormal tumor metabolism and infiltrated immune or stromal cells in the tumor microenvironment (TME) may orchestrate mammary tumor growth and metastasis or give rise to new subsets of cancer cells resistant to drug treatment. The immunosuppressive mechanisms established in the TME make cancer cell clones invulnerable to immune recognition and killing, and turn immune cells into tumor-supporting cells, hence allowing cancer growth and dissemination. Phytochemicals with the potential to change the tumor metabolism or reprogram the TME may provide opportunities to suppress cancer metastasis and/or overcome chemoresistance. Furthermore, phytochemical intervention that reprograms the TME away from favoring immunoevasion and instead towards immunosurveillance may prevent TNBC metastasis and help improve the efficacy of combination therapies as phyto-adjuvants to combat drug-resistant TNBC. In this review, we summarize current findings on selected bioactive plant-derived natural products in preclinical mouse models and/or clinical trials with focus on their immunomodulatory mechanisms in the TME and their roles in regulating tumor metabolism for TNBC prevention or therapy.

Keywords: drug resistance; metabolism; metastasis; phyto-adjuvants; triple-negative breast cancer; tumor microenvironment.

Publication types

  • Review

MeSH terms

  • Animals
  • Antineoplastic Agents, Immunological / pharmacology
  • Antineoplastic Agents, Immunological / therapeutic use
  • Antineoplastic Agents, Phytogenic / pharmacology
  • Antineoplastic Agents, Phytogenic / therapeutic use*
  • Drug Development
  • Female
  • Humans
  • Triple Negative Breast Neoplasms / drug therapy*
  • Triple Negative Breast Neoplasms / immunology
  • Triple Negative Breast Neoplasms / pathology
  • Tumor Escape / drug effects
  • Tumor Microenvironment / drug effects*

Substances

  • Antineoplastic Agents, Immunological
  • Antineoplastic Agents, Phytogenic