Broadband Optical Properties of Atomically Thin PtS2 and PtSe2

Nanomaterials (Basel). 2021 Dec 1;11(12):3269. doi: 10.3390/nano11123269.

Abstract

Noble transition metal dichalcogenides (TMDCs) such as PtS2 and PtSe2 show significant potential in a wide range of optoelectronic and photonic applications. Noble TMDCs, unlike standard TMDCs such as MoS2 and WS2, operate in the ultrawide spectral range from ultraviolet to mid-infrared wavelengths; however, their properties remain largely unexplored. Here, we measured the broadband (245-3300 nm) optical constants of ultrathin PtS2 and PtSe2 films to eliminate this gap and provide a foundation for optoelectronic device simulation. We discovered their broadband absorption and high refractive index both theoretically and experimentally. Based on first-principle calculations, we also predicted their giant out-of-plane optical anisotropy for monocrystals. As a practical illustration of the obtained optical properties, we demonstrated surface plasmon resonance biosensors with PtS2 or PtSe2 functional layers, which dramatically improves sensor sensitivity by 60 and 30%, respectively.

Keywords: dielectric properties; nano-photonics; optical constants; refractive index; spectroscopic ellipsometry; transition metal dichalcogenides; two-dimensional materials.