Ascorbic Acid/Retinol and/or Inflammatory Stimuli's Effect on Proliferation/Differentiation Properties and Transcriptomics of Gingival Stem/Progenitor Cells

Cells. 2021 Nov 25;10(12):3310. doi: 10.3390/cells10123310.

Abstract

The present study explored the effects of ascorbic-acid (AA)/retinol and timed inflammation on the stemness, the regenerative potential, and the transcriptomics profile of gingival mesenchymal stem/progenitor cells' (G-MSCs). STRO-1 (mesenchymal stem cell marker) immuno-magnetically sorted G-MSCs were cultured in basic medium (control group), in basic medium with IL-1β (1 ng/mL), TNF-α (10 ng/mL) and IFN-γ (100 ng/mL, inflammatory-medium), in basic medium with AA (250 µmol/L) and retinol (20 µmol/L) (AA/retinol group) or in inflammatory medium with AA/retinol (inflammatory/AA/retinol group; n = 5/group). The intracellular levels of phosphorylated and total β-Catenin at 1 h, the expression of stemness genes over 7 days, the number of colony-forming units (CFUs) as well as the cellular proliferation aptitude over 14 days, and the G-MSCs' multilineage differentiation potential were assessed. Next-generation sequencing was undertaken to elaborate on up-/downregulated genes and altered intracellular pathways. G-MSCs demonstrated all mesenchymal stem/progenitor cells characteristics. Controlled inflammation with AA/retinol significantly elevated NANOG (p < 0.05). The AA/retinol-mediated reduction in intracellular phosphorylated β-Catenin was restored through the effect of controlled inflammation (p < 0.05). Cellular proliferation was highest in the AA/retinol group (p < 0.05). AA/retinol counteracted the inflammation-mediated reduction in G-MSCs' clonogenic ability and CFUs. Amplified chondrogenic differentiation was observed in the inflammatory/AA/retinol group. At 1 and 3 days, the differentially expressed genes were associated with development, proliferation, and migration (FOS, EGR1, SGK1, CXCL5, SIPA1L2, TFPI2, KRATP1-5), survival (EGR1, SGK1, TMEM132A), differentiation and mineral absorption (FOS, EGR1, MT1E, KRTAP1-5, ASNS, PSAT1), inflammation and MHC-II antigen processing (PER1, CTSS, CD74) and intracellular pathway activation (FKBP5, ZNF404). Less as well as more genes were activated the longer the G-MSCs remained in the inflammatory medium or AA/retinol, respectively. Combined, current results point at possibly interesting interactions between controlled inflammation or AA/retinol affecting stemness, proliferation, and differentiation attributes of G-MSCs.

Keywords: ascorbic acid; gingiva; inflammation; retinol; stem cell.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Ascorbic Acid / pharmacology*
  • Biomarkers / metabolism
  • Cell Differentiation* / drug effects
  • Cell Differentiation* / genetics
  • Cell Lineage / drug effects
  • Cell Lineage / genetics
  • Cell Proliferation / drug effects
  • Cell Proliferation / genetics
  • Colony-Forming Units Assay
  • Female
  • Gene Expression Profiling
  • Gene Expression Regulation / drug effects
  • Gingiva / pathology*
  • Humans
  • Inflammation / genetics
  • Inflammation / pathology*
  • Male
  • Mesenchymal Stem Cells / drug effects
  • Mesenchymal Stem Cells / metabolism
  • Mesenchymal Stem Cells / pathology*
  • RNA, Messenger / genetics
  • RNA, Messenger / metabolism
  • Tissue Donors
  • Transcriptome / drug effects
  • Transcriptome / genetics*
  • Vitamin A / pharmacology*
  • Young Adult
  • beta Catenin / metabolism

Substances

  • Biomarkers
  • RNA, Messenger
  • beta Catenin
  • Vitamin A
  • Ascorbic Acid