Sublayer Stable Fe Dopant in Porous Pd Metallene Boosts Oxygen Reduction Reaction

ACS Nano. 2022 Jan 25;16(1):522-532. doi: 10.1021/acsnano.1c07574. Epub 2021 Dec 23.

Abstract

Engineering the morphology and electronic properties simultaneously of emerging metallene materials is an effective strategy for enhancing their performance as oxygen reduction reaction (ORR) electrocatalysts. Herein, a highly efficient and stable ORR electrocatalyst, Fe-doped ultrathin porous Pd metallene (Fe-Pd UPM) composed of a few layers of 2D atomic metallene layers, was synthesized using a simple one pot wet-chemical method and characterized. Fe-Pd UPM was measured to have enhanced ORR activity compared to undoped Pd metallene. Fe-Pd UPM exhibits a mass activity of 0.736 A mgPd-1 with a loss of mass activity of only 5.1% after 10 000 cycles at 0.9 V versus the reversible hydrogen electrode (vs RHE) in 0.1 M KOH solution. Density functional theory (DFT) calculations reveal that the stable Fe dopant in the inner atomic layers of Fe-Pd UPM delivers a much smaller overpotential during O* hydrogenation into OH*. The morphology, porous structure, and Fe doping were verified to have enhanced ORR activity. We believe that the rational design of metallene materials with porous structures and interlayer doping is promising for the development of efficient and stable electrocatalysts.

Keywords: Fe-doping; electrocatalyst; energy conversion; metallene; oxygen reduction reaction; porous nanomaterial.