Molecular Crowded ″Water-in-Salt″ Polymer Gel Electrolyte for an Ultra-stable Zn-Ion Battery

ACS Appl Mater Interfaces. 2022 Jan 12;14(1):1138-1148. doi: 10.1021/acsami.1c21189. Epub 2021 Dec 21.

Abstract

Recently, the use of a gel polymer electrolyte for the development of robust, flexible, quasi-solid, ultra-stable, high-performance zinc-ion batteries (ZiBs) as an alternative to lithium-ion batteries has attracted widespread attention. However, the performance of ZiBs is limited due to the lack of suitable gel electrolytes. Herein, a ″water-in-salt″ (WiS)-based hydrophilic molecular crowded polymer gel electrolyte and binder free V2O5@MnO2 cathode are introduced to augment the durability, flexibility, safety, and electrochemical performance of ZiBs. The ″free water trapping″ capability of the WiS-based cross-linked molecular crowded polymer electrolyte provides an extended electrochemical stability window (ESW) of the device. The quasi-solid-state ZiB delivers ∼422 mAh g-1 discharge capacity and shows excellent cycling stability as high as ∼79.83% retention of the initial capacity after 5000 cycles. The durable, flexible, and ultra-stable ZiB with the polymer gel electrolyte performs well under various severe conditions where both the battery safety and energy density are of high priority. This work demonstrates a new approach and application for the development of durable, flexible, ultra-stable, quasi-solid-state ZiBs.

Keywords: Zn-ion battery; cyclic stability; polymer gel; solid-state electrolyte; ″water-in-salt″.