Chemoinformatic Characterization of Synthetic Screening Libraries Focused on Epigenetic Targets

Mol Inform. 2022 Jun;41(6):e2100285. doi: 10.1002/minf.202100285. Epub 2021 Dec 20.

Abstract

The importance of epigenetic drug and probe discovery is on the rise. This is not only paramount to identify and develop therapeutic treatments associated with epigenetic processes but also to understand the underlying epigenetic mechanisms involved in biological processes. To this end, chemical vendors have been developing synthetic compound libraries focused on epigenetic targets to increase the probabilities of identifying promising starting points for drug or probe candidates. However, the chemical contents of these data sets, the distribution of their physicochemical properties, and diversity remain unknown. To fill this gap and make this information available to the scientific community, we report a comprehensive analysis of eleven libraries focused on epigenetic targets containing more than 50,000 compounds. We used well-validated chemoinformatics approaches to characterize these sets, including novel methods such as automated detection of analog series and visual representations of the chemical space based on Constellation Plots and Chemical Library Networks. This work will guide the efforts of experimental groups working on high-throughput and medium-throughput screening of epigenetic-focused libraries. The outcome of this work can also be used as a reference to design and describe novel focused epigenetic libraries.

Keywords: Chemical Library Networks; Constellation Plots; analog series; cheminformatics; drug discovery.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cheminformatics*
  • Epigenesis, Genetic
  • Small Molecule Libraries* / chemistry
  • Small Molecule Libraries* / pharmacology

Substances

  • Small Molecule Libraries