Exosomes Derived from M2 Macrophages Exert a Therapeutic Effect via Inhibition of the PI3K/AKT/mTOR Pathway in Rats with Knee Osteoarthritic

Biomed Res Int. 2021 Dec 10:2021:7218067. doi: 10.1155/2021/7218067. eCollection 2021.

Abstract

Macrophages are commonly classified as M1 macrophages or M2 macrophages. M2 macrophages are obtained by stimulation of IL-4 with anti-inflammatory and tissue repair effects. Exosomes are 30-150 nm lipid bilayer membrane vesicles derived from most living cells and have a variety of biological functions. Previous studies have shown that macrophage exosomes can influence the course of some autoimmune diseases, but their effect on knee osteoarthritis (KOA) has not been reported. Here, we analyze the roles of exosomes derived from M2 macrophage phenotypes in KOA rats. Exosomes were isolated from the supernatant of M2 macrophages and identified via transmission electron microscopy (TEM), Western blotting, and DLS. The results showed that M2 macrophage exosomes significantly attenuated the inflammatory response and pathological damage of articular cartilage in KOA rats. In addition, a key protein associated with KOA including Aggrecan, Col-10, SOX6, and Runx2 was significantly increased, while MMP-13 was significantly suppressed following treatment with M2 macrophage exosomes. The present study indicated that M2 macrophage exosomes exerted protective effects on KOA rats mainly mediated by the PI3K/AKT/mTOR signal pathway. These findings provide a novel approach for the treatment of KOA.

MeSH terms

  • Animals
  • Disease Models, Animal
  • Exosomes / metabolism*
  • Inflammation / metabolism
  • Macrophages / metabolism*
  • Male
  • Osteoarthritis, Knee / metabolism*
  • Phosphatidylinositol 3-Kinases / metabolism*
  • Proto-Oncogene Proteins c-akt / metabolism*
  • Rats
  • Rats, Sprague-Dawley
  • Signal Transduction / physiology*
  • TOR Serine-Threonine Kinases / metabolism*

Substances

  • mTOR protein, rat
  • Proto-Oncogene Proteins c-akt
  • TOR Serine-Threonine Kinases