Differentiation of Mesenchymal Stem Cells Derived From Human Adipose Tissue Into Cholinergic-like Cells: An in Vitro Study

Basic Clin Neurosci. 2021 May-Jun;12(3):315-323. doi: 10.32598/bcn.2021.1008.2. Epub 2021 May 1.

Abstract

Introduction: Cholinergic-associated diseases currently constitute a significant cause of neurological and neurodegenerative disabilities. As the drugs are not efficient in improving the suffered tissues, stem cell treatment is considered an effective strategy for substituting the lost cells.

Methods: In the current study, we set out to investigate the differentiation properties of human Adipose-Derived Mesenchymal Stem Cells (AD-MSCs) into cholinergic-like cells by two morphogens of Retinoic Acid (RA) and Sonic Hedgehog (Shh) using a three-step in vitro procedure. The results were evaluated using real-time PCR, flow cytometry, and immunocytochemistry for two weeks.

Results: Our data showed that the cells could express cholinergic specific markers, including Islet-1, Acetylcholinesterase (AChE), SMI-32, and Nestin, at mRNA and protein levels. We could also quantitatively evaluate the expression of Islet-1, AChE, and Nestin at 14 days post-induction using flow cytometry.

Conclusion: Human AD-MSCs are potent cells to differentiate into cholinergic-like cells in the presence of RA and Shh through a three-step protocol. Thus, they could be a suitable cell candidate for the regeneration of cholinergic-associated diseases. However, more functional and electrophysiological analyses are needed in this regard.

Keywords: Adipose-derived mesenchymal stem cells; Cholinergic differentiation; Retinoic acid; Sonic hedgehog.