Loads and elimination of trace elements in wastewater in the Great Lakes basin

Water Res. 2022 Feb 1:209:117949. doi: 10.1016/j.watres.2021.117949. Epub 2021 Dec 7.

Abstract

The growing use of trace elements in industrialized societies is driving an increase in the occurrence of trace elements in anthropogenic waste streams globally. Yet, the large-scale sources of many trace elements to wastewater and their elimination during treatment remain poorly understood and potential environmental impacts on freshwater systems therefore unclear. We screened 42 wastewater treatment facilities in the North American Great Lakes basin and deployed a black-box approach to calculate representative estimates for average per-capita trace element loads and basin-scale effluent discharge rates, as well as trace element removal efficiencies across different treatment technologies. Our results show different removal of specific groups of trace elements during wastewater treatment: average removal efficiencies were 25% for alkali metals, 50% for alkaline earth metals, 74% for transition metals, and 85% for rare earth elements. Higher elimination of the majority of trace elements was generally achieved by more advanced, tertiary treatment types. Elemental loads generally followed natural abundance patterns, but anomalous loading rates were observed for various trace elements across the sampled facilities. By examining geospatial attributes of the sampled sewersheds, trends in select trace element loads were qualitatively tied to possible point sources and diffuse sources. Overall, these results illustrate the potential of wastewater surveillance to inform environmental management of emerging trace element contaminants.

Keywords: Emerging contaminants; Geospatial analysis; Great Lakes; Trace elements; Wastewater.