A Novel Type of PD-L1 Inhibitor rU1 snRNPA From Human-Derived Protein Scaffolds Library

Front Oncol. 2021 Nov 29:11:781046. doi: 10.3389/fonc.2021.781046. eCollection 2021.

Abstract

Three marketed anti-PD-L1 antibodies almost have severe immune-mediated side effects. The therapeutic effects of anti-PD-L1 chemical inhibitors are not satisfied in the clinical trials. Here we constructed human-derived protein scaffolds library and screened scaffolds with a shape complementary to the PD-1 binding domain of PD-L1. The RNA binding domain of U1 snRNPA was selected as one of potential binders because it had the most favorable binding energies with PD-L1 and conformed to pre-established biological criteria for the screening of candidates. The recombinant U1 snRNPA (rU1 snRNPA) in Escherichia coli exhibits anti-cancer activity in melanoma and breast cancer by reactivating tumor-suppressed T cells in vitro and anti-melanoma activity in vivo. Considering hydrophobic and electrostatic interactions, three residues were mutated on the interface of U1 snRNPA and PD-L1 complex, and the ranked variants by PatchDock and A32D showed an increased active phenotype. The screening of human-derived protein scaffolds may become the potential development of therapeutic agents.

Keywords: PD-L1; breast cancer; human-derived; inhibitor; melanoma; scaffold.