Priming crops for the future: rewiring stress memory

Trends Plant Sci. 2022 Jul;27(7):699-716. doi: 10.1016/j.tplants.2021.11.015. Epub 2021 Dec 11.

Abstract

The agricultural sector must produce resilient and climate-smart crops to meet the increasing needs of global food production. Recent advancements in elucidating the mechanistic basis of plant stress memory have provided new opportunities for crop improvement. Stress memory-coordinated changes at the organismal, cellular, and various omics levels prepare plants to be more responsive to reoccurring stress within or across generation(s). The exposure to a primary stress, or stress priming, can also elicit a beneficial impact when encountering a secondary abiotic or biotic stress through the convergence of synergistic signalling pathways, referred to as cross-stress tolerance. 'Rewired plants' with stress memory provide a new means to stimulate adaptable stress responses, safeguard crop reproduction, and engineer climate-smart crops for the future.

Keywords: cross-stress tolerance; epigenetic modification; molecular breeding; stress memory; stress priming; transgenerational inheritance.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Crops, Agricultural* / genetics
  • Stress, Physiological*