Graphene-based dual-functional chiral metamirror composed of complementary 90° rotated U-shaped resonator arrays and its equivalent circuit model

Sci Rep. 2021 Dec 13;11(1):23827. doi: 10.1038/s41598-021-03457-8.

Abstract

An equivalent circuit model (ECM) using a MATLAB code to analyze a tunable two-layered graphene-based chiral dual-function metamirror, is proposed in this work. The investigated metastructure is composed of complementary U-shaped graphene resonator arrays in the terahertz (THz) region. The ECM analysis could be used for any two-layered chiral metastructure for any frequencies, containing resonators with a thickness less than λ/50. The characteristics of the proposed tunable metamirror were analyzed numerically using the finite element method (FEM) in CST Software to verify the ECM analysis. The proposed metamirror can be used in polarization-sensitive devices in the THz region with simpler biasing without a need for ion gels or similar. It works as a broadband TE and multiband (four bands) TM mirror in the 0.3-4.5 THz bandwidth with a strong linear dichroism (LD) response (up to 96%). The designed mirror is a dynamically tunable, dual-functional structure, requiring only 90° rotation of the incident electromagnetic fields to switch between broadband and multiband spectral behavior making it a promising candidate for future THz intelligent systems. The proposed ECM is in agreement with the FEM results. The ECM analysis provides a simple, fast, and effective way to understand the metamirror's behavior and guides for the design and analysis of graphene-based chiral metastructures in the THz region.