Population Development, Fecundity, and Flight of Spodoptera frugiperda (Lepidoptera: Noctuidae) Reared on Three Green Manure Crops: Implications For an Ecologically Based Pest Management Approach in China

J Econ Entomol. 2022 Feb 9;115(1):124-132. doi: 10.1093/jee/toab235.

Abstract

The fall armyworm, Spodoptera frugiperda (Smith), is an invasive pest of cereal crops that now inhabits southern China year-round. Cultivation of crops unsuitable as host plants has been an effective pest management strategy for some insect pests, but the effects of green manure crops on S. frugiperda have not been investigated. An age-stage two-sex life table and tethered flight performance of S. frugiperda reared on different green manure species were obtained, and a population dynamics model established. Developmental durations of stages, survival rates, and fecundities of S. frugiperda differed significantly depending on host plant. Larvae fed Astragalus sinicus L. did not complete development. Although some larvae fed Vicia villosa Roth and Vicia sativa L. completed development, generation time was significantly prolonged, egg production was halved, and net reproductive rate decreased to 31% and 3% of those reared on corn, respectively. Survival rates of early-instars fed V. villosa and V. sativa were significantly lower than those fed corn. Population dynamics projections over 90 d showed the number of generations of S. frugiperda fed on V. villosa and V. sativa was reduced compared to those reared on corn. Flight performance of S. frugiperda reared on V. villosa decreased significantly compared to corn. Our results show that the three green manure species are unsuitable host plants for S. frugiperda. Therefore, reduction of corn production in southern China through rotation with these green manure crops may be a feasible method of ecological management of this major corn pest in China.

Keywords: development; ecological pest management; fecundity; flight; green manure.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Fertility
  • Larva
  • Manure*
  • Moths*
  • Pest Control
  • Spodoptera
  • Zea mays

Substances

  • Manure