A novel algorithm for ranking RNA structure candidates

Biophys J. 2022 Jan 4;121(1):7-10. doi: 10.1016/j.bpj.2021.12.004. Epub 2021 Dec 10.

Abstract

RNA research is advancing at an ever increasing pace. The newest and most state-of-the-art instruments and techniques have made possible the discoveries of new RNAs, and they have carried the field to new frontiers of disease research, vaccine development, therapeutics, and architectonics. Like proteins, RNAs show a marked relationship between structure and function. A deeper grasp of RNAs requires a finer understanding of their elaborate structures. In pursuit of this, cutting-edge experimental and computational structure-probing techniques output several candidate geometries for a given RNA, each of which is perfectly aligned with experimentally determined parameters. Identifying which structure is the most accurate, however, remains a major obstacle. In recent years, several algorithms have been developed for ranking candidate RNA structures in order from most to least probable, though their levels of accuracy and transparency leave room for improvement. Most recently, advances in both areas are demonstrated by rsRNASP, a novel algorithm proposed by Tan et al. rsRNASP is a residue-separation-based statistical potential for three-dimensional structure evaluation, and it outperforms the leading algorithms in the field.

Publication types

  • Research Support, N.I.H., Extramural
  • Comment

MeSH terms

  • Algorithms*
  • Nucleic Acid Conformation
  • Proteins
  • RNA* / chemistry
  • RNA* / genetics
  • Sequence Analysis, RNA

Substances

  • Proteins
  • RNA