Verification-Based Design of a Robust EMG Wake Word

Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov:2021:638-642. doi: 10.1109/EMBC46164.2021.9630922.

Abstract

Surface electromyography (sEMG) signals are now commonly used in continuous myoelectric control of prostheses. More recently, researchers have considered EMG-based gesture recognition systems for human computer interaction research. These systems instead focus on recognizing discrete gestures (like a finger snap). The majority of works, however, have focused on improving multi-class performance, with little consideration for false activations from "other" classes. Consequently, they lack the robustness needed for real-world applications which generally require a single motion class such as a mouse click or a wake word. Furthermore, many works have borrowed the windowed classification schemes from continuous control, and thus fail to leverage the temporal structure of the gesture. In this paper, we propose a verification-based approach to creating a robust EMG wake word using one-class classifiers (Support Vector Data Description, One Class-Support Vector Machine, Dynamic Time Warping (DTW) & Hidden Markov Models). The area under the ROC curve (AUC) is used as a feature optimization objective as it provides a better representation of the verification performance. Equal error rate (EER) and AUC are then used as evaluation metrics. The results are computed using both window-based and temporal classifiers on a dataset consisting of five different gestures, with a best EER of 0.04 and AUC of 0.98, recorded using a DTW scheme. These results demonstrate a design framework that may benefit the development of more robust solutions for EMG-based wake words or input commands for a variety of interactive applications.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms*
  • Artificial Limbs*
  • Electromyography
  • Gestures
  • Hand