Recruiting Perovskites to Degrade Toxic Trinitrotoluene

Materials (Basel). 2021 Dec 2;14(23):7387. doi: 10.3390/ma14237387.

Abstract

Everybody knows TNT, the most widely used explosive material and a universal measure of the destructiveness of explosions. A long history of use and extensive manufacture of toxic TNT leads to the accumulation of these materials in soil and groundwater, which is a significant concern for environmental safety and sustainability. Reliable and cost-efficient technologies for removing or detoxifying TNT from the environment are lacking. Despite the extreme urgency, this remains an outstanding challenge that often goes unnoticed. We report here that highly controlled energy release from explosive molecules can be accomplished rather easily by preparing TNT-perovskite mixtures with a tailored perovskite surface morphology at ambient conditions. These results offer new insight into understanding the sensitivity of high explosives to detonation initiation and enable many novel applications, such as new concepts in harvesting and converting chemical energy, the design of new, improved energetics with tunable characteristics, the development of powerful fuels and miniaturized detonators, and new ways for eliminating toxins from land and water.

Keywords: catalytic degradation; chemical decomposition mechanisms; high energy density materials; high explosives; reaction activation barriers and kinetics.