On the Dynamics of Transient Plasmas Generated by Nanosecond Laser Ablation of Several Metals

Materials (Basel). 2021 Nov 30;14(23):7336. doi: 10.3390/ma14237336.

Abstract

The dynamics of transient plasma generated by UV ns-laser ablation of selected metals (Co, Cu, Ag, Bi) were investigated by the Langmuir Probe method in angle- and time-resolved modes. Multiple ionic and electronic structures were seen for all plasmas with some corresponding to anions or nanoparticle-dominated structures. The addition of an Ar atmosphere energetically confined the plasma and increased the charge density by several orders of magnitude. For pressure ranges exceeding 0.5 Pa fast ions were generated in the plasma as a result of Ar ionization and acceleration in the double layer defining the front of the plasma plume. Several correlations between the target nature plasma properties were attempted. The individual plasma structure expansion velocity increases with the melting point and decreases with the atomic mass while the corresponding charged particle densities decrease with the melting point, evidencing the relationship between the volatility of the sample and the overall abated mass.

Keywords: Langmuir probe; laser produced plasmas; metals; plasma-target correlation.