Comparison of Shaped Charge Jet Performance Generated by Machined and Additively Manufactured CuSn10 Liners

Materials (Basel). 2021 Nov 24;14(23):7149. doi: 10.3390/ma14237149.

Abstract

The Selective Laser Melting (SLM) technique has attracted attention in a wide range of manufacturing research areas, including the defense industry because of its high efficiency and good consistency of manufactured material properties. Shaped charge liner is the crucial unit in the shaped charge warhead. However, jet performance formed by SLM-produced liner remains to be studied systematically. In the present research work, the SLM technique was applied to manufacture CuSn10 shaped charge liners. Casted CuSn10 liners were also fabricated using the classical turning method for comparison. The grain size of the SLM-produced liner was found to be much smaller than the machined liner due to the rapid heating and cooling rate during the SLM manufacturing process. This contributed to improved jet performance. A flash X-ray photography system was applied to capture jet stretching appearances. Necking appears at the jet tip formed by the machined liner, while the jet formed by the SLM-produced liner remains continuous. Penetration test results show that the penetration depth of the jet formed by the SLM-produced liner is around 27% larger than that formed by the machined liner. Segments along the sidewall of the penetration tunnels were selected for in-depth micro analysis. Energy dispersed spectrum (EDS) surface scanning results indicate the composition at the side wall of the penetrated tunnel. Metallurgical microscope was applied to distinguish four different phase zones of the target. The width of these different zones indicates the severity of the lateral interaction between the jet and target, which can be adopted to evaluate jet penetration capability. The present study analyzes the factors that influence jet performances and proves that SLM technology is well-adapted in the manufacturing of shaped charge liners.

Keywords: CuSn10; jet performance; microstructures; penetration capability; selective laser melting; shaped charge liner.