MicroRNAs as Novel Biomarkers for P2Y12 - Inhibitors Resistance Prediction

Pharmgenomics Pers Med. 2021 Dec 2:14:1575-1582. doi: 10.2147/PGPM.S324612. eCollection 2021.

Abstract

Aim: The aim of this study is to assess 6 micro-RNAs: miR-126, miR-223, miR-150, miR-29, miR-34, miR-142 as potential biomarkers for P2Y12- inhibitors resistance prediction.

Methods: Eighty patients with an acute coronary syndrome undergoing percutaneous coronary intervention treated in a multidisciplinary hospital in Moscow with DAPT (either with ticagrelor, n=45, or clopidogrel, n=35) were enrolled. The carriership of 6 clinically relevant polymorphisms for ticagrelor and 17 for clopidogrel was detected. Expression levels of six prospective miRNAs were measured. The activity of CYP3A4 isoenzyme was measured as the ratio of the concentrations of cortisol and 6β-hydroxycortisol.

Results: The polymorphisms of the P2Y12-inhibitors ADME genes that demonstrated statistically significant connection with miRNA expression levels are as follows: P2Y12R (A>G, rs3732759) and miR-29 (p=0.017), miR-34 (p=0.003); CYP2C19*17 (C-806T, rs1224856) and miR-142 (p=0.012); PON1 (Q192R, rs662) and miR-29 (p=0.004), ABCG2 (G>T, rs2231142) and miR-34 (p=0.007). MiRNAs expression levels showed connection with the results of the platelet reactivity assessment by utilizing VerifyNow assay ("Instrumentation laboratory", MA, US). MiR-126 (β coefficient=-0.076, SE=0.032, p=0.021), miR-223 (β coefficient=-0.089, SE=0.041, p=0.032), miR-29 (β coefficient=-0.042, SE=0.018, p=0.026), miR-142 (β coefficient=-0.072, SE=0.026, p=0.008) have the potential to be used as biomarkers and may substitute platelet reactivity testing.

Conclusion: This study has revealed new biomarkers for P2Y12-inhibitors resistance testing: miR-29, miR-34, miR-126, miR-142, miR-223.

Keywords: acute coronary syndrome; biomarker; miRNA; pharmacogenomics; polymorphism.