Modulating Interactions between Molten Polystyrene and Porous Solids Using Atomic Layer Deposition

Langmuir. 2021 Dec 14;37(49):14520-14526. doi: 10.1021/acs.langmuir.1c02604. Epub 2021 Dec 6.

Abstract

Understanding and modulating the interactions between molten polymers and porous solids is important for numerous processes and phenomena including catalytic conversion of polymers and fabrication of nanocomposites and nanostructured materials. Although changing the surface composition of pores would enable modulation of interactions between polymers and nanoporous solids, it is challenging to achieve such a control without inducing significant changes to the size and structure of nanopores. In this work, we demonstrate that the interactions between molten polystyrene (PS) and disordered packings of SiO2 nanoparticles (NPs) can be modulated by changing the surface composition of the NPs using atomic layer deposition (ALD). A disordered packing of silica NPs is modified with varying surface coverages of TiO2, WO3, and CaCO3, with coverages estimated by the mass gain and the refractive index change of NP packings. Based on the time required to fully infiltrate these ALD-modified NP packings via capillarity, the contact angles for PS on different surfaces prepared via ALD are determined. The contact angle gradually changes from that of pure SiO2 to that of the fully covered surfaces. The contact angles for PS on SiO2, TiO2, WO3, and CaCO3 are found to be 20, 62, 70, and 10°, respectively. Interestingly, the contact angles and interfacial energies between PS and the ALD-modified surfaces do not correlate strongly with the water contact angle of these surfaces; thus, caution must be exercised in predicting how a polymer would wet or interact with porous solids solely based on their hydrophilicity. The method presented in this work can be extended to study the interactions between a wide range of polymers and surfaces in porous media, which will have important implications for designing new catalytic materials for polymer upcycling reactions and novel NP-polymer composite films and membranes with enhanced mechanical and transport properties.