Experimental infection of Rhodnius robustus Larrousse, 1927 (Hemiptera, Reduviidae, Triatominae) with Trypanosoma cruzi (Chagas, 1909) (Kinetoplastida, Trypanosomatidae) IV

Exp Parasitol. 2022 Jan:232:108197. doi: 10.1016/j.exppara.2021.108197. Epub 2021 Dec 1.

Abstract

Vector competence of triatomines (kissing bugs) for Trypanosoma cruzi transmission depends on the parasite-vector interaction and the genetic constitution of both. This study evaluates the susceptibility and vector competence of Rhodnius robustus experimentally infected with T. cruzi IV (TcIV). Nymphs were fed on infected mice or an artificial feeder with blood containing culture-derived metacyclic trypomastigotes (CMT) or blood trypomastigotes (BT). The intestinal contents (IC) and excreta of the insects were examined by fresh examination and kDNA-PCR. The rate of metacyclogenesis was also determined by differential counts. Fifth instar nymphs fed with CMT ingested a greater blood volume (mean of 74.5 μL) and a greater amount of parasites (mean of 149,000 CMT/μL), and had higher positivity in the fresh examination of the IC. Third instar nymphs fed with CMT had higher positivity (33.3%) in the fresh examination of the excreta. On the 20th day after infection (dai), infective metacyclic trypomastigote (MT) forms were predominant in the excreta of 3/4 experimental groups, and on the 30th dai, the different parasitic forms were observed in the IC of all the groups. Higher percentages of MT were observed in the excreta of the 5th instar nymphs group (84.1%) and in the IC of the 3rd instar nymphs group (80.0%). Rhodnius robustus presented high susceptibility to infection since all nymphs were infected, regardless of the method used for blood meal, in addition these insects demonstrated vector competence for TcIV with high rates of metacyclogenesis being evident.

Keywords: Chagas disease; Interaction; Parasite; Susceptibility to infection; Vector competence; Vectors.

MeSH terms

  • Animals
  • Chagas Disease / transmission*
  • Humans
  • Insect Vectors / parasitology*
  • Mice
  • Nymph / parasitology
  • Polymerase Chain Reaction
  • Rhodnius / parasitology*
  • Trypanosoma cruzi / physiology*