Discovery, Structure Correction, and Biosynthesis of Actinopyrones, Cytotoxic Polyketides from the Deep-Sea Hydrothermal-Vent-Derived Streptomyces sp. SCSIO ZS0520

J Nat Prod. 2022 Mar 25;85(3):625-633. doi: 10.1021/acs.jnatprod.1c00901. Epub 2021 Dec 1.

Abstract

Three new actinopyrone derivatives, actinopyrones E-G (1, 3, and 4), together with three known analogues, PM050463 (2), actinopyrone D (5), and PM050511 (6), were isolated from Streptomyces sp. SCSIO ZS0520 derived from a deep-sea hydrothermal vent. Their structures, complete with absolute configurations, were elucidated using extensive spectroscopic analyses combined with Mosher's method, ECD calculations, and bioinformatics analyses. These findings corrected the absolute configurations of previously reported actinopyrone analogues 2, 5, and 6 at C-3, C-9, and C-10. Notably, compound 6 displayed notable cytotoxicity against six human cell lines with IC50 values of 0.26-2.22 μM. A likely biosynthetic pathway and annotations of protein function are proposed on the basis of bioinformatics analyses. Genes coding for methyltransferase and glycosyltransferase tailoring chemistries needed to generate final structures were notably absent from the biosynthetic gene cluster. Taken together, these results enable further bioengineering of the actinopyrones and related congeners as potential antitumor agents.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antineoplastic Agents* / chemistry
  • Antineoplastic Agents* / pharmacology
  • Humans
  • Molecular Structure
  • Multigene Family
  • Polyketides* / pharmacology
  • Streptomyces* / chemistry

Substances

  • Antineoplastic Agents
  • Polyketides