Unraveling the Molar Mass Dependence of Shearing-Induced Aggregation Structure of a High-Mobility Polymer Semiconductor

Adv Mater. 2022 Feb;34(7):e2108255. doi: 10.1002/adma.202108255. Epub 2022 Jan 6.

Abstract

Aggregation-structure formation of conjugated polymers is a fundamental problem in the field of organic electronics and remains poorly understood. Herein, the molar mass dependence of the aggregation structure of a high-mobility conjugated copolymer (TDPP-Se) comprising thiophene-flanked diketopyrrolopyrrole and selenophene is thoroughly shown. Five batches of TDPP-Se are prepared with the number-average molecular weights (Mn ) varied greatly from 21 to 135 kg mol-1 . Small-angle neutron scattering and transmission electron microscopy are combined to probe the solution structure of these polymers, consistently using a deuterated solvent. All the polymers adopt 1D rod-like aggregation structures and the radius of the 1D rods is not sensitive to the Mn , while the length increases monotonically with Mn . By utilizing the ordered packing of the aggregated structure in solution, a highly aligned and ordered film is prepared and, thereafter, a reliable hole mobility of 13.8 cm2 V-1 s-1 is realized in organic thin-film transistors with the moderate Mn batch via bar coating. The hole mobility is among the highest values reported for diketopyrrolopyrrole-based polymers. This work paves the way to visualize the real aggregated structure of polymer semiconductors in solution and sheds light on the microstructure control of high-performance electronic devices.

Keywords: aggregation structures; bar coating; conjugated polymers; molar mass dependence; organic thin-film transistors.