Fractional-Order Susceptible-Infected Model: Definition and Applications to the Study of COVID-19 Main Protease

Fract Calc Appl Anal. 2020;23(3):635-655. doi: 10.1515/fca-2020-0033. Epub 2020 Jul 11.

Abstract

We propose a model for the transmission of perturbations across the amino acids of a protein represented as an interaction network. The dynamics consists of a Susceptible-Infected (SI) model based on the Caputo fractional-order derivative. We find an upper bound to the analytical solution of this model which represents the worse-case scenario on the propagation of perturbations across a protein residue network. This upper bound is expressed in terms of Mittag-Leffler functions of the adjacency matrix of the network of inter-amino acids interactions. We then apply this model to the analysis of the propagation of perturbations produced by inhibitors of the main protease of SARS CoV-2. We find that the perturbations produced by strong inhibitors of the protease are propagated far away from the binding site, confirming the long-range nature of intra-protein communication. On the contrary, the weakest inhibitors only transmit their perturbations across a close environment around the binding site. These findings may help to the design of drug candidates against this new coronavirus.