Controllable synthesis of Mo2C with different morphology and application to electrocatalytic hydrogen evolution reaction

Nanotechnology. 2021 Dec 15;33(10). doi: 10.1088/1361-6528/ac3e33.

Abstract

In order to evaluate the effect of precursors and synthesis strategies on catalytic ability of Mo2C in the hydrogen evolution reaction (HER), four kinds of Mo2C were synthesized using two kinds of MoO3by two strategies. Compared with the one-step direct carbonization strategy, Mo2C with a large special surface area and a better performance could be synthesized by the two-step strategy composed of a nitridation reaction and a carbonization reaction. Additionally, the as-prepared porous Mo2C nanobelts (NBs) exhibit good electrocatalytic performance with a small overpotential of 165 mV (0.5 M H2SO4) and 124 mV (1 M KOH) at 10 mA cm-2, as well as a Tafel slope of 58 mV dec-1(0.5 M H2SO4) and 59 mV dec-1(1 M KOH). The excellent catalytic activity is ascribed to the nano crystallites and porous structure. What's more, the belt structure also facilitates the charge transport in the materials during the electrocatalytic HER process. Therefore, the two-step strategy provides a new insight into the structural design with superior performance for electrocatalytic HER.

Keywords: electrocatalytic hydrogen evolution reaction; molybdenum carbide; morphology control; nanobelt; porous structure.