Loss of GdpP Function in Staphylococcus aureus Leads to β-Lactam Tolerance and Enhanced Evolution of β-Lactam Resistance

Antimicrob Agents Chemother. 2022 Feb 15;66(2):e0143121. doi: 10.1128/AAC.01431-21. Epub 2021 Nov 29.

Abstract

Infections caused by Staphylococcus aureus are a leading cause of mortality. Treating infections caused by S. aureus is difficult due to resistance against most traditional antibiotics, including β-lactams. We previously reported the presence of mutations in gdpP among S. aureus strains that were obtained by serial passaging in β-lactam drugs. Similar mutations have recently been reported in natural S. aureus isolates that are either nonsusceptible or resistant to β-lactam antibiotics. gdpP codes for a phosphodiesterase that cleaves cyclic-di-AMP (CDA), a newly discovered second messenger. In this study, we sought to identify the role of gdpP in β-lactam resistance in S. aureus. Our results showed that gdpP-associated mutations caused loss of phosphodiesterase function, leading to increased CDA accumulation in the bacterial cytosol. Deletion of gdpP led to an enhanced ability of the bacteria to withstand a β-lactam challenge (2 to 3 log increase in bacterial CFU) by promoting tolerance without enhancing MICs of β-lactam antibiotics. Our results demonstrated that increased drug tolerance due to loss of GdpP function can provide a selective advantage in acquisition of high-level β-lactam resistance. Loss of GdpP function thus increases tolerance to β-lactams that can lead to its therapy failure and can permit β-lactam resistance to occur more readily.

Keywords: GdpP; Staphylococcus aureus; beta-lactams; cyclic-di-AMP; tolerance.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Bacterial Agents / pharmacology
  • Bacterial Proteins / genetics
  • Drug Tolerance
  • Methicillin-Resistant Staphylococcus aureus*
  • Microbial Sensitivity Tests
  • Staphylococcus aureus* / genetics
  • beta-Lactam Resistance / genetics
  • beta-Lactams / pharmacology

Substances

  • Anti-Bacterial Agents
  • Bacterial Proteins
  • beta-Lactams