Solid-phase recombinase polymerase amplification using ferrocene-labelled dNTPs for electrochemical detection of single nucleotide polymorphisms

Biosens Bioelectron. 2022 Feb 15:198:113825. doi: 10.1016/j.bios.2021.113825. Epub 2021 Nov 23.

Abstract

Hypertrophic cardiomyopathies (HCM) are the principal cause of sudden cardiac death in young athletes and it is estimated that 1 in 500 people have HCM. The aim of this work was to develop an electrochemical platform for the detection of HCM-associated SNP in the Myosin Heavy Chain 7 (MYH7) gene, in fingerprick blood samples. The platform exploits isothermal solid-phase primer elongation using recombinase polymerase amplification with either individual or a combination of four ferrocene-labelled nucleoside triphosphates. Four thiolated reverse primers containing a variable base at their 3' end were immobilised on individual gold electrodes of an array. Following hybridisation with target DNA, solid phase recombinase polymerase amplification was carried out and primer elongation incorporating the ferrocene labelled oligonucleotides was only detected at one of the electrodes, thus facilitating identification of the SNP under interrogation. The assay was applied to the direct detection of the SNP in fingerprick blood samples from eight different individuals, with the results obtained corroborating with next generation sequencing. The ability to be able to robustly identify the SNP using a 10 μL fingerprick sample, demonstrates that SNP discrimination is achieved using low femtomolar (ca. 8 × 105 copies DNA) levels of DNA.

Keywords: Biosensors; Electrochemical detection; Ferrocene-dNTPs; Fingerprick; SNP; Solid phase recombinase polymerase amplification.

MeSH terms

  • Biosensing Techniques*
  • DNA / genetics
  • Humans
  • Metallocenes
  • Polymorphism, Single Nucleotide
  • Recombinases* / genetics

Substances

  • Metallocenes
  • Recombinases
  • DNA