N-3 Polyunsaturated Fatty Acids Ameliorate Neurobehavioral Outcomes Post-Mild Traumatic Brain Injury in the Fat-1 Mouse Model

Nutrients. 2021 Nov 15;13(11):4092. doi: 10.3390/nu13114092.

Abstract

Concussions and mild traumatic brain injury (m-TBI) have been identified as a consequential public health concern because of their potential to cause considerable impairments in physical, cognitive, behavioral, and social functions. Given their prominent structural and functional roles in the brain, n-3 polyunsaturated fatty acids (PUFA) have been identified as a potentially viable prophylactic agent that may ameliorate the deleterious effects of m-TBI on brain function. The purpose of the present pilot study was to investigate the effect of n-3 PUFA on neurologic function using a weight drop injury (WDI) model. Fat-1 mice, capable of synthesizing n-3 PUFA endogenously from n-6 PUFA, and their wild-type (WT) counterparts, were subjected to a mild low-impact WDI on the closed cranium, and recovery was evaluated using the neurological severity score (NSS) to assess the motor and neurobehavioral outcomes. In comparison to the WT mice, the fat-1 mice had a significantly (p ≤ 0.05) lower NSS at all time points post-WDI, and significantly greater neurological restoration measured as the time to first movement. Overall, these findings demonstrate the protective effect of n-3 PUFA against mild brain injury.

Keywords: TBI; concussion; mild traumatic brain injury; n-3 PUFA; neurological sensitivity score.

MeSH terms

  • Animals
  • Behavior, Animal / physiology*
  • Brain / metabolism
  • Brain Concussion / metabolism*
  • Brain Concussion / psychology
  • Disease Models, Animal
  • Fatty Acids, Omega-3 / biosynthesis*
  • Injury Severity Score
  • Mice
  • Neuroprotective Agents / metabolism*
  • Pilot Projects
  • Skull / injuries*

Substances

  • Fatty Acids, Omega-3
  • Neuroprotective Agents