Resistance to Boscalid, Fluopyram and Fluxapyroxad in Blumeriella jaapii from Michigan (U.S.A.): Molecular Characterization and Assessment of Practical Resistance in Commercial Cherry Orchards

Microorganisms. 2021 Oct 21;9(11):2198. doi: 10.3390/microorganisms9112198.

Abstract

Management of cherry leaf spot disease, caused by the fungus Blumeriella jaapii, with succinate dehydrogenase inhibitor (SDHI) fungicides has been ongoing in Michigan tart cherry orchards for the past 17 years. After boscalid-resistant B. jaapii were first isolated from commercial orchards in 2010, premixes of SDHI fungicides fluopyram or fluxapyroxad with a quinone outside inhibitor were registered in 2012. Here, we report widespread resistance to fluopyram (FluoR), fluxapyroxad (FluxR), and boscalid (BoscR) in commercial orchard populations of B. jaapii in Michigan from surveys conducted between 2016 and 2019. A total of 26% of 1610 isolates from the 2016-2017 surveys exhibited the fully-resistant BoscR FluoR FluxR phenotype and only 7% were sensitive to all three SDHIs. Practical resistance to fluopyram and fluxapyroxad was detected in 29 of 35 and 14 of 35 commercial tart cherry orchards, respectively, in surveys conducted in 2018 and 2019. Sequencing of the SdhB, SdhC, and SdhD target genes from 22 isolates with varying resistance phenotypes showed that BoscS FluoR FluxS isolates harbored either an I262V substitution in SdhB or an S84L substitution in SdhC. BoscR FluoR FluxR isolates harbored an N86S substitution in SdhC, or contained the N86S substitution with the additional I262V substitution in SdhB. One BoscR FluoR FluxR isolate contained both the I262V substitution in SdhB and the S84L substitution in SdhC. These mutational analyses suggest that BoscR FluoR FluxR isolates evolved from fully sensitive BoscS, FluoS, FluxS isolates in the population and not from boscalid-resistant isolates that were prevalent in the 2010-2012 time period.

Keywords: SdhB; SdhC; cherry leaf spot; succinate dehydrogenase inhibitor.