Serum Total SOD Activity and SOD1/2 Concentrations in Predicting All-Cause Mortality in Lung Cancer Patients

Pharmaceuticals (Basel). 2021 Oct 21;14(11):1067. doi: 10.3390/ph14111067.

Abstract

Redox status disturbances are known during carcinogenesis and may have influence on patients' survival. However, the prediction of mortality in lung cancer patients based on serum total SOD activity, and concentrations of its isoforms, has not been studied to date. This prospective cohort study has following aims: (1) to evaluate the disturbances in serum SOD activity and SOD1/2 concentrations; (2) to assess the implications of these alterations with regard to biochemical variables and clinical data, and (3) to investigate the association between serum SOD activity, SOD1/2 concentrations, and all-cause mortality in lung cancer patients. Serum total SOD activity and SOD1, SOD2, albumin, CRP, and ceruloplasmin concentrations were determined in lung cancer patients (n = 190) and control subjects (n = 52). Additionally, patients were characterized in terms of biochemical, clinical, and sociodemographic data. Multiple Cox regression models were used to estimate the association between all-cause death and SOD-related parameters. All-cause mortality in lung cancer was positively associated with serum SOD1 and SOD2 concentrations. Clinical stage III and IV disease was the strongest predictor. The utility of the evaluated parameters in predicting overall survival was demonstrated only for SOD1. Serum SOD1 and SOD2 concentrations were shown to positively affect all-cause mortality in lung cancer patients, but SOD1 seems to be a better predictor than SOD2.

Keywords: C-reactive protein; Glasgow prognostic score; SOD1; SOD2; albumin; lung cancer; serum; total SOD activity.