Biomolecular, Histological, Clinical, and Radiological Analyses of Dental Implant Bone Sites Prepared Using Magnetic Mallet Technology: A Pilot Study in Animals

Materials (Basel). 2021 Nov 17;14(22):6945. doi: 10.3390/ma14226945.

Abstract

Background: A new instrumentation exploiting magneto-dynamic technology (mallet) proposed for implant site preparation was investigated.

Methods: In the tibias of three minipigs, two sites were prepared by mallet and two by drill technique. Primary stability (ISQ) was detected after implant positioning (T0) and at 14 days (T14). X-rays and computed tomography were performed. At T14, bone samples were utilized for histological and biomolecular analyses.

Results: In mallet sites, histological evaluations evidenced a significant increase in the newly formed bone, osteoblast number, and a smaller quantity of fibrous tissue. These results agree with the significant BMP-4 augmentation and the positive trend in other osteogenic factors (biological and radiological investigations). Major, albeit IL-10-controlled, inflammation was present. For both techniques, at T14 a significant ISQ increase was evidenced, but no significant difference was observed at T0 and T14 between the mallet and drill techniques. In mallet sites, lateral bone condensation was observed on computed tomography.

Conclusions: Using biological, histological, clinical, and radiological analyses, this study first shows that the mallet technique is effective for implant site preparation. Based on its ability to cause osseocondensation and improve newly formed bone, mallet technology should be chosen in all clinical cases of poor bone quality.

Keywords: dental implants; drill technique; implant stability quotient; inflammation; mallet technique; osteogenesis.